Tissue-Specific Upregulation of MDS/EVI Gene Transcripts in the Intestine by Thyroid Hormone during Xenopus Metamorphosis
نویسندگان
چکیده
BACKGROUND Intestinal remodeling during amphibian metamorphosis resembles the maturation of the adult intestine during mammalian postembryonic development when the adult epithelial self-renewing system is established under the influence of high concentrations of plasma thyroid hormone (T3). This process involves de novo formation and subsequent proliferation and differentiation of the adult stem cells. METHODOLOGY/PRINCIPAL FINDINGS The T3-dependence of the formation of adult intestinal stem cell during Xenopus laevis metamorphosis offers a unique opportunity to identify genes likely important for adult organ-specific stem cell development. We have cloned and characterized the ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI generated via transcription from the upstream MDS promoter and alternative splicing. EVI and MDS/EVI have been implicated in a number of cancers including breast, leukemia, ovarian, and intestinal cancers. We show that EVI and MDS/EVI transcripts are upregulated by T3 in the epithelium but not the rest of the intestine in Xenopus laevis when adult stem cells are forming in the epithelium. CONCLUSIONS/SIGNIFICANCE Our results suggest that EVI and MDS/EVI are likely involved in the development and/or proliferation of newly forming adult intestinal epithelial cells.
منابع مشابه
Developmental expression and hormonal regulation of glucocorticoid and thyroid hormone receptors during metamorphosis in Xenopus laevis.
Corticosteroids, the primary circulating vertebrate stress hormones, are known to potentiate the actions of thyroid hormone in amphibian metamorphosis. Environmental modulation of the production of stress hormones may be one way that tadpoles respond to variation in their larval habitat, and thus control the timing of metamorphosis. Thyroid hormone and corticosteroids act through structurally s...
متن کاملOne of the duplicated matrix metalloproteinase-9 genes is expressed in regressing tail during anuran metamorphosis.
The drastic morphological changes of the tadpole are induced during the climax of anuran metamorphosis, when the concentration of endogenous thyroid hormone is maximal. The tadpole tail, which is twice as long as the body, shortens rapidly and disappears completely in several days. We isolated a cDNA clone, designated as Xl MMP-9TH, similar to the previously reported Xenopus laevis MMP-9 gene, ...
متن کاملCharacterization of Xenopus Tissue Inhibitor of Metalloproteinases-2: A Role in Regulating Matrix Metalloproteinase Activity during Development
BACKGROUND Frog metamorphosis is totally dependent on thyroid hormone (T3) and mimics the postembryonic period around birth in mammals. It is an excellent model to study the molecular basis of postembryonic development in vertebrate. We and others have shown that many, if not all, matrix metalloproteinases (MMPs), which cleave proteins of the extracellular matrix as well as other substrates, ar...
متن کاملThyroid hormone activates protein arginine methyltransferase 1 expression by directly inducing c-Myc transcription during Xenopus intestinal stem cell development.
Adult organ-specific stem cells are essential for organ homeostasis and tissue repair and regeneration. The formation of such stem cells during vertebrate development is poorly understood. Intestinal remodeling during thyroid hormone (T3)-dependent Xenopus metamorphosis resembles postembryonic intestinal maturation in mammals. During metamorphosis, the intestine is remodeled de novo via a yet u...
متن کاملOrigin of the adult intestinal stem cells induced by thyroid hormone in Xenopus laevis.
In the amphibian intestine during metamorphosis, de novo stem cells generate the adult epithelium analogous to the mammalian counterpart. Interestingly, to date the exact origin of these stem cells remains to be determined, making intestinal metamorphosis a unique model to study development of adult organ-specific stem cells. Here, to determine their origin, we made use of transgenic Xenopus ta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013